
www.manaraa.com

Modeling the Performance of E-Commerce Sites

Jonathan C. Hardwick1, Efstathios Papaefstathiou1, and David Guimbellot2
1 Microsoft Research Limited, Cambridge, UK
2 Microsoft Corporation, Redmond WA, USA

Indy is a new performance modeling framework for the creation of tools for
many different classes of performance problems, including capacity planning,
bottleneck analysis, etc. Users can plug in their own workload and hardware
models while exploiting core shared services such as resource tracking and
evaluation engines. We used Indy to create EMOD, a performance analysis
tool for database-backed web sites. We validate EMOD using the predicted
and observed performance of SVT, a sample e-commerce site.

INTRODUCTION

As the software industry moves to supplying services
over the internet, the problem of predicting and
modeling the performance of these services becomes
even more acute. Instead of running on a single
computer, services rely on a distributed collection of
servers. These can range from a simple two-tier e-
commerce site to a geographically distributed collection
of portal services. Performance, reliability,
management cost, and scalability are all critical to the
success of these services [SPE00]. However, their
distributed nature makes it difficult to predict or
understand the ramifications of changes to the system.
Monitoring can reveal the impact of a change, but only
after the fact. Furthermore, because of the 24/7 nature
of these services, it is important for operations
managers and developers to be able to anticipate the
performance implications of internal changes (e.g.
system topology, software modification) and external
factors (e.g. load spikes).

What is needed is a range of performance modeling
tools that allow software developers, planning staff, and
operations managers to ask a wide variety of what-if
questions before they apply changes to the service
itself. Currently, there are a limited number of modeling
tools that can be used for this purpose. This lack of
general purpose tools can be attributed to the complex
nature of the modeling process. A modeling tool has to
choose:

• A basic modeling technique, e.g. simulation,
statistical, or analytical.

• A role for the tool, e.g. capacity planning or
performance debugging.

• A level of abstraction, which can range from
treating servers as black boxes to modeling
individual lines of code.

• A target audience, which will affect output
methods, e.g. system administrators or
performance analysts.

Existing tools tend to provide a single solution in this
multi-dimensional problem space. That is, they choose
one combination of the above range of parameters to
produce a specialized solution. As a result, there is little
sharing of expertise or code between tools, and the
tools themselves are not widely adopted.

The rest of this paper is organized as follows. First, we
propose the idea of modeling infrastructures as a
general solution to the problems outlined above, and
describe Indy, a particular infrastructure that we have
developed. Next we describe how we used Indy to
create EMOD, a tool for modeling the performance of
e-commerce sites. Then we show how EMOD can be
used to model a particular site, and validate its
predictions. Finally, we discuss further extensions to the
Indy infrastructure and possibilities for future work.

MODELING INFRASTRUCTURES

As a solution to this problem, we propose the use of a
modeling infrastructure [PAP00]. This is not a single
tool, because as we have seen above a single tool
cannot handle all of the possible modeling
requirements. Rather, it is a general-purpose toolkit that
can be used to create any number of specialized tools
for individual modeling purposes. Furthermore, it is not
limited to a fixed set of components – users can
contribute new components to extend the toolkit’s
capabilities and the range of tools that can be produced
using it.

We now differentiate between tool developers and end
users. A tool developer interacts directly with the
modeling infrastructure, choosing from the sets of

www.manaraa.com

parameters discussed previously (modeling technique,
tool role, abstraction level, output method, etc) to
produce a tool for a particular role. The developer may
choose to plug together preexisting components
supplied in a library as part of the infrastructure, or to
develop new components to further extend the
capabilities of the infrastructure. An end user then uses
the resulting tool to solve a particular performance
problem. They can modify problem parameters,
workloads, and configurations within the limits set by
the developer of the tool, but cannot further extend it.

Given this outline, we can now define the requirements
of such an infrastructure. It should support:

1. A component-based plug-and-play structure,
where each component has a particular role.

2. Well-defined interfaces between the individual
components.

3. A core engine or kernel that controls the flow
of information between components

4. A development environment to simplify the
creation of new tools using the infrastructure.

Our Infrastructure: Indy

As a proof of concept of a modeling infrastructure, we
have developed a particular implementation, called
Indy. It meets all of the requirements listed above.
Individual components are Win32 DLLs that can be
dynamically loaded into a running process. The
components communicate either via XML according to
standardized schemas, or via well-defined APIs. The
kernel is a linkable library containing the algorithms and
data structures necessary for the evaluation of
performance models, and for the coordination of the
whole system. Any required user interface can be put
on top of this kernel. One example is Indyview, a front-
end to the Indy system which can be used both as a
development environment for the creation of new tools,
and a production environment to run them in.

A diagram of information flow in the Indy architecture is
shown in Figure 1. As shown, a tool created with the

Indy system adds the following user-contributed
components to the kernel:

• Configuration parameters
• System topology
• Workload model
• Hardware models

Configuration parameters are simple name/value
variables that are defined by the creator of a
performance study, and can then be adjusted by a user
to modify the behavior of a model. For example, the
hardware model for a CPU might take a “CPU speed”
configuration parameter, and adjust its behavior
accordingly. Configuration parameters are read from an
XML file and stored in a kernel metadirectory that holds
user-supplied information.

The system topology lists the devices in the system
being modeled, their interconnections, and the
hardware models that correspond to these devices.
Again, the system topology is stored in an XML file. The
user can easily browse, modify, and save any of this
XML information using tree-based editors from within
the Indyview interface, as shown in Figure 2. Other
approaches to generating this information can easily be
imagined: for example, a drag-and-drop interface for
constructing and editing topologies.

A hardware model describes the behavior of a device
listed in the topology. Note that “device” is used here in
a fairly loose sense, in that it may be a virtual entity
(such as a thread) instead of a physical one (such as a
CPU or disk). A device represents an active entity that
provides a certain capability – for example, a disk can
process disk operations, and a network interface can
process incoming and outgoing messages. The Indy
kernel calls hardware models to determine how much
time is required to perform these actions on each
device. The complexity and level of detail of a hardware
model is entirely up to the user: a simple model of a
network might be implemented by a one-line function
that computes “time = latency + message size /

Configuration
Parameters

System
Topology

Workload Model
(DLL)

Hardware
Models (DLLs)

Configuration
Engine

Workload
Engine

Evaluation
Engine

Meta Directory Event List
Hierarchy

Event Lists Events

Kernel engines

Kernel
structures

User
components

Figure 1: Information flow in the Indy architecture

www.manaraa.com

bandwidth”, while a more complicated model might
take contention into account, or model the individual
packets traversing the network. The user can then
choose which model to use based on their
requirements of evaluation time, accuracy, and level of
abstraction. For example, the user might choose to use
a slow but detailed model for the component under
study, and simple fast models for the rest of the system.
Hardware models are implemented as Win32 DLLs
that implement a standard set of interfaces called by
the Indy kernel.

The workload model is the most complicated part of a
performance study. It defines the flow of events through
the system being modeled. The workload model
therefore combines the tasks of generating the
simulated input, and describing the causal relationships
between events that take place on system devices as a
result of that input. Again, workload models are
implemented as Win32 DLLs, and interact with the Indy
kernel through standard APIs. It is up to the writer of a
workload model whether to generate a synthetic input
workload according to some statistical profile, or to
simply replay a captured workload. The output of the
workload model is a series of timelines containing
workload requests for each of the actions that should
take place in the system, and specifying what resource
they require. A timeline may contain forks and joins,
representing actions that can take place in parallel.

The Indy Kernel

At the next level down, the Indy kernel itself includes
three engines that hide the complexity of the internal
modeling algorithms by providing well-defined
abstractions.

The system configuration engine processes the system
topology script and creates an event list for each of the
active devices modeled in the system. An event is the

internal representation of an action being performed,
such as computation, communication, or disk I/O. The
event lists are then populated by the workload engine,
which determines which events are run on which
hardware devices, taking into account the incoming
timelines from the workload generator, the system
topology, and the underlying hardware models.

Finally, the evaluation engine coordinates the
evaluation of each of the events using their assigned
hardware models, and combines individual event
timings to determine the overall performance of the
system. The current evaluation engine uses event-
based simulation together with novel scheduling and
resource tracking algorithms (described later) that can
efficiently model the contention happening on a real
system.

The result of the evaluation is an output trace showing
the interactions between the components of the system
as it processes the workload. This can then be
visualized directly using a tool such as Indyview, or it
can be post-processed for use by other tools.

BUILDING THE EMOD MODEL

We’ll now describe the creation of EMOD, an Indy
workload model for use in the Indyview system that
models e-commerce sites. It is designed for capacity
planning purposes, and therefore uses a simple model
with a high level of abstraction in order to obtain fast
turnaround from simulations. This simplicity also makes
it a good example.

EMOD is designed to model multi-tier web sites which
consist of front-end web servers, possibly a business
logic layer, and finally a database layer. Such systems
service queries from an internet or intranet.

EMOD must therefore be flexible enough to handle

<active_device type="computer" name="IIS" count="4">
 <active_device type="thread" name="NIC_Inet" count="2"/>
 <active_device type="thread" name="NIC_LAN" count="2"/>
 <active_device type="thread" name="CPU" count="1">

<use_template name="CpuModel:Pentium 600MHz"/>
 </active_device>
</active_device>
<active_device type="computer" name="SQL" count="1">
 <active_device type="thread" name="NIC_LAN" count="2"/>
 <active_device type="thread" name="CPU" count="1">
 <use_template name="CpuModel:Pentium 600MHz"/>
 <use_template name="DiskModel:Fujitsu MHK2060AT"/>
 </active_device>
</active_device>
<active_device type="computer" name="Client" count="100"/>

Figure 2: Two views of a system topology, in Indyview and as the corresponding XML file

www.manaraa.com

most conceivable types of e-commerce sites, which can
have:

• Different numbers and types of servers
• Different types of backbone network
• Different basic actions
• Different transaction mixes and client loads

The first choice to make is the level of abstraction to
use. This affects the devices that must be modeled and
the actions that can be performed on them. For EMOD
we use a high level of abstraction, modeling servers
with just three types of active device: CPUs, disks, and
network interfaces. Each of these devices can have a
basic named action performed on it, as follows:

Device Action Measurement unit
CPU Compute CPU cycles (Mcycles)
Disk Diskop Disk operations (seeks)
NIC Comm Message size (Kbytes)

To use EMOD to model a particular e-commerce site, a
user must therefore break down the transactions of that
site into individual CPU, disk, and network actions, and
compute their costs. This is easy to do with existing
performance monitoring tools, as described in the
validation section. The relative ease of capturing the
data required for a particular model is an important
consideration in choosing the level of abstraction.

Note that memory is not being modeled here – for the
purposes of the EMOD example we assume that
servers will always have adequate memory to handle
the load. It would be easiest to model memory as a
resource that has a limit on its use and is temporarily
consumed by an event, just as a network model has an
upper bandwidth limit and costs for individual
messages. Measuring memory requirements of
individual applications is trickier, however, and hence
we have left it out this simple model.

Modeling Threads of Control

The next decision in creating the model is how to
represent these devices, and the threads of control that
they use to process actions, in the topology. There are
two basic alternatives. The first is to represent reality as
closely as possible. For example, each CPU on a web
server might be assigned twenty threads of control,
representing the listening threads of the web server
process. All these threads contend for a single
resource (the CPU), and the kernel must therefore
schedule them appropriately. An Indy representation to
achieve this is described in the Extensions section.

A simpler alternative is to model a single thread of
control that services the resource under contention. For

example, we can model a single thread of control per
web server that has the entire CPU to itself. All client
requests are then directed to this single thread, where
they are queued and executed in order by the Indy
kernel scheduler. Effectively we are modeling the flow
of control on the CPU itself, rather than in the multiple
threads contending for it. The overall effect in terms of
throughput is the same, in that each request waits its
turn for the CPU to become available, uses the
appropriate amount of CPU time, and then leaves the
system. However, it may not accurately reflect the
latency of individual requests.

We will use this single-thread queuing technique for all
of the resources under contention in the EMOD model:
CPUs, network interfaces, and disks on web servers,
business logic servers, and database servers. For
network interfaces we will use two threads, one for
sending messages and one for receiving them,
representing the full-duplex nature of the interface. This
explains the two threads shown for each NIC in Figure
2.

Creating a Workload

Having chosen a level of abstraction for our model in
terms of basic actions and the threading model that it
should support, we must now define the possible
workloads of the EMOD model. That is, we must
choose how a user can express the transactions
supported by a particular e-commerce site, such as
viewing the home page, or adding an item to a
shopping basket, in terms of these basic actions. The
simplest approach would be to hardcode a set of
supported transactions into the model, where each
transaction would be composed of a series of actions,
and the user would only be able to specify the relative
frequency of transactions and the costs of their
individual actions. While this is suitable for a special-
purpose model aimed at a known application with a
known workload, it is not viable for EMOD, which is
intended to be more general-purpose.

Instead, we have chosen to let the user describe the
transactions of a particular e-commerce site using a
transaction script. This is an XML file that defines a
number of transactions, each of which is composed of
one or more actions, which represent the behavior of
the system during the transaction. The type and
composition of transactions is completely up to the end-
user – they can supply a different transaction script for
each e-commerce site being modeled, with a different
range of transactions. Only the possible actions (CPU
computation, disk operations, and network
communication) are fixed by the model.

www.manaraa.com

The workload generator for EMOD thus has two
phases. In the first phase, it reads a transaction script
(whose name is found from a configuration parameter),
and parses the information into internal data structures
representing each of the transactions. In the second
phase, it generates a synthetic workload, assigning
transactions to clients using a statistical model to
generate them at appropriate frequencies based on
workload parameters. The workload generator creates
and populates a timeline for each of the clients.

USING EMOD TO MODEL THE SVT SITE

Having created EMOD, we now want to use it to model
SVT, a sample e-commerce site. This is a simple two-
tier database-backed website, with a typical range of
page actions: viewing the home page, browsing details
of an item for sale, running a search over the site,
viewing ads, logging in as a customer, adding an item to
the shopping cart, viewing the cart, and checking out
(page actions are shown in Figure 4). Note that SVT
assumes a two-tier hierarchy where the business logic
is executed on the web servers themselves.

We will create a separate EMOD transaction for each of
the page actions in SVT, and therefore need to
benchmark the website in order to derive costs for the
various actions in a transaction. For this we used a
cluster of 16 machines, which could be configured into
different numbers of clients and servers, as shown in
Figure 3. All machines were dual PII-300s with 384MB

of RAM running Windows 2000 Advanced Server SP2,
connected by two private switched Fast Ethernet
networks to simulate the internet and intranet networks.
 Specific roles were configured as follows: the client
machines ran Microsoft’s Web Application Stress tool
[WAS01]; the front-end servers ran Microsoft IIS 5.0;
and the back-end server ran Microsoft SQL Server
2000. All servers also ran Microsoft Commerce Server
2000.

To test each page, we used WAST to record our
actions as we visited it. This script was then replayed
using multiple clients against a single web server.
Clients were added until the performance of the system
(as measured by its thoughput in transactions per
second) leveled off. The following Windows
performance counters were recorded for all servers:

Device Performance counter
Processor %Processor Time
Network Interface Bytes Sent/Sec
Network Interface Bytes Received/Sec
Physical Disk Disk Transfers/Sec

The resulting figures per transaction are shown in
Figure 4. Note that the transactions from ViewCart
onwards require the user to have logged in first. The
WAST script therefore contains both a Login
transaction and the transaction being tested, and the
costs of the Login transaction are subtracted to get the

Name
Internet
Request
(kbytes)

IIS CPU
Load
(Mcycles)

LAN
Request
(kbytes)

SQL CPU
Load
(Mcycles)

SQL
Disk
Transfers

LAN
Response
(kbytes)

Internet
Response
(kbytes)

Home 2.9 3.2 0 0 0 0 18.4
Browse 0.8 0.8 0 0 0 0 7.4
SearchASP 0.7 5.8 0 0 0 0 4.0
Ads 1.0 13.8 0 0 0 0 5.6
Login 8.1 7.2 0.9 1.6 0 0.1 26.2
ViewCart 1.0 15.2 0.3 1.0 0 0.1 5.9
AddItem 2.8 36.8 1.9 4.2 0 0.3 7.1
Checkout 2.9 59.3 6.9 10.6 2 0.9 8.2

Figure 4: Measured transaction costs for the SVT sample site.

WAST 1

WAST 2

…

Network Switch

IIS 1

IIS 2

…

Network Switch SQL

Figure 3: Experimental setup used to benchmark SVT site for validation of EMOD model.

Client machines Front-end servers Back-end server

www.manaraa.com

final results.

Hardware Models and Parameters

For the purposes of testing we wrote very simple
hardware models for the CPU, network, and disk
models. These use a linear function to map the size of
a request (number of CPU cycles, message size in
kilobytes, or number of disk operations) to the time
required. The behavior of these models can be
adjusted via hardware parameters that represent CPU
speed, network bandwidth and latency, and disk seek
time. As noted previously, these can be replaced by
more complex hardware models, as long as they
support the same basic actions.

The workload parameters used in the study are shown
in Figure 5. Note that all of the parameter names
ending in Freq represent transaction frequencies – they
are referred to in the transaction script created for the
SVT site.

Modeling Network Traffic

There are at least two different approaches to modeling
the internet and backbone network traffic generated by
WAST scripts. The simple approach is to use
aggregate numbers for network traffic, lumping
together all the network actions in a given transaction.
For example, a web page consisting of six separate
elements is transferred in real life using six separate
HTTP request/response pairs, of different sizes. We
can represent these with a single large HTTP
request/response pair, deriving the sizes very easily
from the aggregate WAST traffic numbers. The end
result will be a model that accurately represents
network throughput in terms of total bandwidth, but not
latency. The advantages of this approach are that the

data can be collected very easily, and the resulting
script is very simple. This approach can also be used
for modeling traffic on the backbone network, using
performance monitor counters of bytes/sec for the
various network interfaces to get the data.

The more accurate approach is to model each of the
network actions individually. For the front-end machines
this is fairly straightforward, using the content length
figures from the page data section of the WAST report
to get HTTP response sizes. HTTP request sizes can
be approximated to be identical, and can be derived
from the aggregate WAST traffic divided by the number
of requests. For back end machines, WAST does not
capture the number of messages sent, only their size.
We therefore have to use extra tools and techniques to
monitor network traffic during a single test transaction.
This approach can give full modeling of traffic and
latency effects between the client and front end
machines, at the cost of some extra complexity in
capturing the data, and much lengthier XML scripts.

We have chosen to use the simple approach to model
the SVT site. A fragment of the resulting transaction
script is shown in Figure 6: this models a Checkout
transaction as a single request from the client to the IIS
server, computation on the IIS server, a single request
to the SQL server, computation and disk operations on
the SQL server, and finally communication chained
back to the client via the IIS server.

Note the use of CheckoutFreq as a named variable in
the second line of the script – this is looked up in the
workload parameters shown in Figure 5. By contrast,

<transaction name="Checkout"
 frequency="CheckoutFreq">
 <action name="Inet:icomm" device="Client">
 <config name="target" device="IIS" />
 <config name="msgsize" value="2.9" />
 </action>
 <action name="compute" device="IIS">
 <config name="cpuops" value="59.3" />
 </action>
 <action name="LAN:lancomm" device="IIS">
 <config name="target" device="SQL" />
 <config name="msgsize" value="6.9" />
 </action>
 <action name="diskop" device="SQL">
 <config name="DiskOp" value="2" />
 </action>
 <action name="compute" device="SQL">
 <config name="cpuops" value="10.6" />
 </action>
 <action name="LAN:lancomm" device="SQL">
 <config name="target" device="IIS" />
 <config name="msgsize" value="0.92" />
 </action>
 <action name="Inet:icomm" device="IIS">
 <config name="target" device="Client" />
 <config name="msgsize" value="8.2" />
 </action>
</transaction>

Figure 6: XML representation of the SVT
Checkout transaction for EMOD.

Figure 5: Workload parameters for SVT

www.manaraa.com

the costs of the individual actions are hard coded into
the script, which must be edited in order to change
them. These could also be named variables, which
would make it easier to adjust them but at the cost of a
much longer list of workload parameters.

RESULTS

We now show that Indy can give accurate results. At the
simplest level, we can replicate the experiments from
which the SVT model data were collected. Figure 7
shows the measured and predicted results for the
maximum transaction rates achieved by one IIS server
in our experimental setup. The predictions are accurate
to within 5%. This level of accuracy could also be
achieved using simple regression techniques and
transaction cost analysis [MSS99].

We can also validate the effect of increasing the load
on the system by increasing the number of clients
making simultaneous transactions. The measured and
predicted results for the SVT home page transaction
running on a single IIS server are shown in Figure 8.
Note that although the SVT model underestimates the

overall system throughput for small input loads, and
overestimates it for higher loads, it accurately models
the relationship between throughput and CPU load on
the IIS server (that is, the corresponding shapes of the
TPS and CPU lines). It also conservatively predicts
system saturation at 8 simultaneous clients, versus an
observed saturation point of 10 clients – this behavior
cannot be obtained using TCA techniques. The SVT
model could obviously be further refined to match the
observed shape of the performance curve.

Indy also offers the ability to easily ask “what-if”
performance questions, and further analyze the results.
For example, Figure 9 shows bottleneck analysis of a
hypothetical server farm with a single SQL server and
multiple IIS servers, running sequences of “login, add
product to cart, checkout” transactions. For a fixed input
load, the system shows no performance improvement
beyond seven IIS servers. When we look at the Indy
kernel variables that report average queuing delays in
each of the active components, we see that the SQL
server has reached saturation point. After this point the
system throughput will remain the same until we
increase the number of SQL servers or their

Figure 7: Measured versus predicted transaction rates for SVT site

1

10

100

1000

Home Brow se Search Ads Login Cart Add Checkout

Transaction type

T
ra

ns
ac

tio
ns

/s
ec

Measured

Predicted

Figure 8: Measured and predicted transaction rates and CPU load on IIS server
for a single transaction type as workload is increased

0
20

40
60

80
100

120
140

160
180

1 2 3 4 5 6 7 8 9 10 11 12

Number of simultaneous clients

T
ra

ns
ac

tio
ns

/s
ec

0
10
20
30
40
50
60
70
80
90
100

C
P

U
 lo

ad

Measured TPS

Predicted TPS

Measured CPU

Predicted CPU

www.manaraa.com

performance.

Finally, we can use Indyview to examine events in more
detail. For example, Figure 10 shows the components
of an SVT individual transaction being run on the
threads of IIS and SQL servers, using a time-space
diagram.

EXTENSIONS

As described, the EMOD tool does not utilize two
important features of the Indy kernel: schedulers and
resource contention timelines. These can be used to

further improve its realism and accuracy.

Schedulers

EMOD uses a simple round-robin mapping of events to
devices. This is sufficient for the uniformly random
workloads and identical hardware configurations tested
so far. However, it will produce incorrect results if the
expected load on each server is not the same. A real-
life example of this would be a partial upgrade of the
web servers on an e-commerce site, increasing the
CPU speed of half of them. Assuming that a dynamic
load-balancing package is being used on the site, the

Figure 9: Transaction rate for fixed load plateaus after seven IIS servers: EMOD
bottleneck analysis shows that the SQL server has become the limiting factor

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12

Number of IIS servers

E
ve

nt
 d

el
ay

 (
m

s)

0

5

10

15

20

25

30

35

40

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

IIS event delay

SQL event delay

Transactions/sec

Figure 10: EMOD model running in Indyview. An SVT transaction is being inspected
using a time-space diagram to show the activity of individual threads of control.

www.manaraa.com

faster servers will then be assigned proportionately
more of the load. Although EMOD would correctly
model the throughput of such a site, it would
overestimate the total time required to process a given
workload (or, equivalently, the delay experienced by
users). Another example would be dynamic load-
balancing of computation requests amongst multiple
CPUs in an SMP server. If the requests are not uniform,
EMOD’s simple round-robin mapping would result in
queues rapidly developing on those CPUs that happen
to get several large requests in succession, while other
CPUs that happen to get several small requests would
quickly complete them and then sit idle. Again, while
total throughput would be accurately modeled, overall
time taken and individual response time would not be.

To solve this problem, we must delay assigning events
to devices until evaluation time, when system status is
known. This is a decoupling of causality (which events
cause which other events) from evaluation (where
events are processed and how long they take).

We have therefore extended the Indy kernel to support
dynamic scheduling of resources. A group of resources
can now be controlled by a single scheduler, which
chooses at evaluation time which of the resources each
incoming action should be assigned to. The algorithm
used by each scheduler is of course customizable, and
can directly correspond to the equivalent algorithm
being used in real life. Thus, a load-balancing web
server scheduler might allocate requests based on the
queue length of each web server. Actions can then be
assigned to a scheduler, rather than to the event list of
a particular device.

Note that existing performance modeling tools typically
do not suffer from this problem, because they tightly
couple the generation of the workload with its
evaluation. That is, generation and evaluation proceed
in lockstep. This simplifies the process of generating
new events, because they have full access to the
current state of the system. However, this tight coupling
is unsuitable for a component-based toolkit such as
Indy, where we want to be able to cleanly separate the
functions of the different components. Adding
schedulers to Indy restores the lost information.

Resource contention timelines

As described, the Indy kernel models contention
between devices for shared resources. For example,
the bandwidth of a network is shared amongst the
messages currently traversing it. This is a first-order
effect: sharing a resource directly reduces the amount
of it available to any one request. In real life there can
be additional second-order effects, related to the
number of simultaneous requests. For example, as the
traffic on a shared Ethernet network approaches the
theoretical maximum capacity of the network,

contention between messages (and the resulting
backoff and retransmit actions) effectively reduces the
total bandwidth available. Thus, message transmit
times become longer than a simple linear model would
suggest.

In order to model these second-order effects, we have
added resource contention timelines to the Indy kernel.
These track the instantaneous usage of every resource
being modeled, and feed this information back to the
appropriate hardware models. The hardware model
can then impose additional costs on any events
currently taking place. For example, in a model of a
shared Ethernet, the resource tracked could be the
number of messages contending for the network, and
the hardware model would map this number into an
extra delay for each message.

As well as increasing the accuracy of the modeling
process by capturing second-order performance
effects, resource contention timelines also enable the
user to be shown a much more intuitive view of the
system. For example, Indyview can simultaneously
display a graph of the contention for a particular
resource above a time-space diagram showing events
taking place on that resource.

Figure 11 shows both dynamic scheduling and
resource contention timelines being used in an Indy
performance study of the IBuySpy ASP.NET site.

RELATED WORK

The Microsoft Commerce Server [MSS99] uses a
methodology that is based on Transaction Cost
Analysis (TCA) aiming to characterize the performance
of the commerce site, determine bottlenecks, and
perform capacity planning. A web stress application tool
is initially employed to measure the transaction rates
and the resource utilization varying the client load. A
usage profile aiming to capture the anticipated user
behavior is then defined. TCA is used to measure the
cost of individual transaction costs. The capacity of the
site is determined by dividing the cost of operation into
the total CPU capacity available for the server.

[MEN00] includes a detailed methodology for modeling
commerce sites, evaluating infrastructure and services,
and perform capacity planning. Workload formalisms
are described for commerce sites including a Customer
Behavior Model Graph (CBMG) and a Customer Visit
Model (CVM). Other formalisms are also introduced to
describe the software control flow and interactions.
Analytical models for various aspects of the commerce
site operation are also discussed, such as
authentication protocols, secure transactions, and
payment systems. Queuing models are employed to
represent the more complex aspects of the commerce
architecture.

www.manaraa.com

In [LOO00] a framework is presented for enumerating
the components of the response time of the transaction
of a Commerce Site. Each transaction type is analyzed
into stages of processing and communication that take
place during its lifecycle. The authors claim that the
framework can form the foundation of a systematic
review process that has the ability to expose
performance problems and reveal possibilities for
improving response times. The data gathered and
organized into this framework can be further utilized as
inputs to performance models for identifying
architectural alternatives.

CONCLUSIONS

In this paper we have described how to use Indy, a new
performance modeling infrastructure, to create EMOD,
a simple performance model for e-commerce sites. We
have then validated this model using the SVT sample
site. We have shown that:

• Using the Indy kernel, a simple model can
make reasonable performance predictions.

• The Indyview interface can be used to answer
“what if” performance questions

• A model can be enhanced to use additional
Indy features to improve its accuracy.

We hope to release a revised version of the EMOD tool
on MSDN (http://msdn.microsoft.com) by early 2002.

REFERENCES

[LOO00] C. Loosley, R. Gimarc, and A.C. Spellmann,
“E-Commerce Response Time: A Reference Model”, in
Proceedings of the Computer Measurement Group's
2000 International Conference (CMG 2000), Dec 2000.

[MEN00] D.A. Menasce and V.A.F. Almeida, “Scaling
for E-Business”, Prentice Hall, 2000.

[MSS99] Microsoft Site Server Commerce, “Using
Transaction Cost Analysis for Site Capacity Planning”,
http://www.microsoft.com/technet/default.asp

[PAP00] E. Papaefstathiou, “Design of a Performance
Technology Infrastructure to Support the Construction
of Responsive Software,” in Proceedings of the 2nd
International Workshop on Software and Performance
(WOSP 2000), Ottawa, Canada, Sep. 2000, pp. 96-
104.

[SPE00] A. Spellmann and R.L. Girmarc, “eBusiness
Performance: Risk Mitigation in Zero Time”, in
Proceedings of the Computer Measurement Group's
2000 International Conference (CMG 2000), Dec 2000.

[WAS01] Microsoft Web Application Stress web site,
http://webtool.rte.microsoft.com/.

Figure 11: View of resource contention timelines and dynamic scheduling in the Indyview interface. The lower
panel shows events taking place on multiple dynamically-scheduled threads on a single CPU of a web server.
The upper panel shows resource contention timelines tracking threads on a CPU and messages on a LAN.

