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Indy is a new performance modeling framework for the creation of tools for 
many different classes of performance problems, including capacity planning, 
bottleneck analysis, etc. Users can plug in their own workload and hardware 
models while exploiting core shared services such as resource tracking and 
evaluation engines. We used Indy to create EMOD, a performance analysis 
tool for database-backed web sites. We validate EMOD using the predicted 
and observed performance of SVT, a sample e-commerce site. 

 
 
 

INTRODUCTION 

As the software industry moves to supplying services 
over the internet, the problem of predicting and 
modeling the performance of these services becomes 
even more acute. Instead of running on a single 
computer, services rely on a distributed collection of 
servers. These can range from a simple two-tier e-
commerce site to a geographically distributed collection 
of portal services. Performance, reliability, 
management cost, and scalability are all critical to the 
success of these services [SPE00]. However, their 
distributed nature makes it difficult to predict or 
understand the ramifications of changes to the system. 
Monitoring can reveal the impact of a change, but only 
after the fact. Furthermore, because of the 24/7 nature 
of these services, it is important for operations 
managers and developers to be able to anticipate the 
performance implications of internal changes (e.g. 
system topology, software modification) and external 
factors (e.g. load spikes).  
 
What is needed is a range of performance modeling 
tools that allow software developers, planning staff, and 
operations managers to ask a wide variety of what-if 
questions before they apply changes to the service 
itself. Currently, there are a limited number of modeling 
tools that can be used for this purpose. This lack of 
general purpose tools can be attributed to the complex 
nature of the modeling process. A modeling tool has to 
choose: 

• A basic modeling technique, e.g. simulation, 
statistical, or analytical. 

• A role for the tool, e.g. capacity planning or 
performance debugging. 

• A level of abstraction, which can range from 
treating servers as black boxes to modeling 
individual lines of code. 

• A target audience, which will affect output 
methods, e.g. system administrators or 
performance analysts. 

 
Existing tools tend to provide a single solution in this 
multi-dimensional problem space. That is, they choose 
one combination of the above range of parameters to 
produce a specialized solution. As a result, there is little 
sharing of expertise or code between tools, and the 
tools themselves are not widely adopted. 
 
The rest of this paper is organized as follows. First, we 
propose the idea of modeling infrastructures as a 
general solution to the problems outlined above, and 
describe Indy, a particular infrastructure that we have 
developed. Next we describe how we used Indy to 
create EMOD, a tool for modeling the performance of 
e-commerce sites. Then we show how EMOD can be 
used to model a particular site, and validate its 
predictions. Finally, we discuss further extensions to the 
Indy infrastructure and possibilities for future work. 

MODELING INFRASTRUCTURES 

As a solution to this problem, we propose the use of a 
modeling infrastructure [PAP00]. This is not a single 
tool, because as we have seen above a single tool 
cannot handle all of the possible modeling 
requirements. Rather, it is a general-purpose toolkit that 
can be used to create any number of specialized tools 
for individual modeling purposes. Furthermore, it is not 
limited to a fixed set of components – users can 
contribute new components to extend the toolkit’s 
capabilities and the range of tools that can be produced 
using it. 
 
We now differentiate between tool developers and end 
users. A tool developer interacts directly with the 
modeling infrastructure, choosing from the sets of 
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parameters discussed previously (modeling technique, 
tool role, abstraction level, output method, etc) to 
produce a tool for a particular role. The developer may 
choose to plug together preexisting components 
supplied in a library as part of the infrastructure, or to 
develop new components to further extend the 
capabilities of the infrastructure. An end user then uses 
the resulting tool to solve a particular performance 
problem. They can modify problem parameters, 
workloads, and configurations within the limits set by 
the developer of the tool, but cannot further extend it. 
 
Given this outline, we can now define the requirements 
of such an infrastructure. It should support: 

1. A component-based plug-and-play structure, 
where each component has a particular role. 

2. Well-defined interfaces between the individual 
components.  

3. A core engine or kernel that controls the flow 
of information between components 

4. A development environment to simplify the 
creation of new tools using the infrastructure. 

Our Infrastructure: Indy 

As a proof of concept of a modeling infrastructure, we 
have developed a particular implementation, called 
Indy. It meets all of the requirements listed above. 
Individual components are Win32 DLLs that can be 
dynamically loaded into a running process. The 
components communicate either via XML according to 
standardized schemas, or via well-defined APIs. The 
kernel is a linkable library containing the algorithms and 
data structures necessary for the evaluation of 
performance models, and for the coordination of the 
whole system. Any required user interface can be put 
on top of this kernel. One example is Indyview, a front-
end to the Indy system which can be used both as a 
development environment for the creation of new tools, 
and a production environment to run them in. 
 
A diagram of information flow in the Indy architecture is 
shown in Figure 1. As shown, a tool created with the 

Indy system adds the following user-contributed 
components to the kernel: 

• Configuration parameters 
• System topology  
• Workload model 
• Hardware models 

 
Configuration parameters are simple name/value 
variables that are defined by the creator of a 
performance study, and can then be adjusted by a user 
to modify the behavior of a model. For example, the 
hardware model for a CPU might take a “CPU speed” 
configuration parameter, and adjust its behavior 
accordingly. Configuration parameters are read from an 
XML file and stored in a kernel metadirectory that holds 
user-supplied information. 
 
The system topology lists the devices in the system 
being modeled, their interconnections, and the 
hardware models that correspond to these devices. 
Again, the system topology is stored in an XML file. The 
user can easily browse, modify, and save any of this 
XML information using tree-based editors from within 
the Indyview interface, as shown in Figure 2. Other 
approaches to generating this information can easily be 
imagined: for example, a drag-and-drop interface for 
constructing and editing topologies. 
 
A hardware model describes the behavior of a device 
listed in the topology. Note that “device” is used here in 
a fairly loose sense, in that it may be a virtual entity 
(such as a thread) instead of a physical one (such as a 
CPU or disk). A device represents an active entity that 
provides a certain capability – for example, a disk can 
process disk operations, and a network interface can 
process incoming and outgoing messages. The Indy 
kernel calls hardware models to determine how much 
time is required to perform these actions on each 
device. The complexity and level of detail of a hardware 
model is entirely up to the user: a simple model of a 
network might be implemented by a one-line function 
that computes “time = latency + message size / 

Configuration 
Parameters  

System 
Topology 

Workload Model 
(DLL) 

Hardware 
Models (DLLs) 

Configuration 
Engine 

Workload 
Engine 

Evaluation 
Engine 

Meta Directory Event List 
Hierarchy 

Event Lists Events 

Kernel engines 

Kernel 
structures 

User 
components 

Figure 1: Information flow in the Indy architecture 
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bandwidth”, while a more complicated model might 
take contention into account, or model the individual 
packets traversing the network. The user can then 
choose which model to use based on their 
requirements of evaluation time, accuracy, and level of 
abstraction. For example, the user might choose to use 
a slow but detailed model for the component under 
study, and simple fast models for the rest of the system. 
Hardware models are implemented as Win32 DLLs 
that implement a standard set of interfaces called by 
the Indy kernel. 
 
The workload model is the most complicated part of a 
performance study. It defines the flow of events through 
the system being modeled. The workload model 
therefore combines the tasks of generating the 
simulated input, and describing the causal relationships 
between events that take place on system devices as a 
result of that input. Again, workload models are 
implemented as Win32 DLLs, and interact with the Indy 
kernel through standard APIs. It is up to the writer of a 
workload model whether to generate a synthetic input 
workload according to some statistical profile, or to 
simply replay a captured workload. The output of the 
workload model is a series of timelines containing 
workload requests for each of the actions that should 
take place in the system, and specifying what resource 
they require. A timeline may contain forks and joins, 
representing actions that can take place in parallel. 

The Indy Kernel 

At the next level down, the Indy kernel itself includes 
three engines that hide the complexity of the internal 
modeling algorithms by providing well-defined 
abstractions.  
 
The system configuration engine processes the system 
topology script and creates an event list for each of the 
active devices modeled in the system. An event is the 

internal representation of an action being performed, 
such as computation, communication, or disk I/O. The 
event lists are then populated by the workload engine, 
which determines which events are run on which 
hardware devices, taking into account the incoming 
timelines from the workload generator, the system 
topology, and the underlying hardware models.  
 
Finally, the evaluation engine coordinates the 
evaluation of each of the events using their assigned 
hardware models, and combines individual event 
timings to determine the overall performance of the 
system. The current evaluation engine uses event-
based simulation together with novel scheduling and 
resource tracking algorithms (described later) that can 
efficiently model the contention happening on a real 
system. 
 
The result of the evaluation is an output trace showing 
the interactions between the components of the system 
as it processes the workload. This can then be 
visualized directly using a tool such as Indyview, or it 
can be post-processed for use by other tools. 

BUILDING THE EMOD MODEL 

We’ll now describe the creation of EMOD, an Indy 
workload model for use in the Indyview system that 
models e-commerce sites. It is designed for capacity 
planning purposes, and therefore uses a simple model 
with a high level of abstraction in order to obtain fast 
turnaround from simulations. This simplicity also makes 
it a good example. 
 
EMOD is designed to model multi-tier web sites which 
consist of front-end web servers, possibly a business 
logic layer, and finally a database layer. Such systems 
service queries from an internet or intranet.  
 
EMOD must therefore be flexible enough to handle 

<active_device type="computer" name="IIS" count="4"> 
  <active_device type="thread" name="NIC_Inet" count="2"/> 
  <active_device type="thread" name="NIC_LAN" count="2"/> 
  <active_device type="thread" name="CPU" count="1"> 

<use_template name="CpuModel:Pentium 600MHz"/> 
  </active_device> 
</active_device> 
<active_device type="computer" name="SQL" count="1"> 
  <active_device type="thread" name="NIC_LAN" count="2"/> 
  <active_device type="thread" name="CPU" count="1"> 
    <use_template name="CpuModel:Pentium 600MHz"/> 
    <use_template name="DiskModel:Fujitsu MHK2060AT"/> 
  </active_device> 
</active_device> 
<active_device type="computer" name="Client" count="100"/> 

Figure 2: Two views of a system topology, in Indyview and as the corresponding XML file 
 



www.manaraa.com

most conceivable types of e-commerce sites, which can 
have: 

• Different numbers and types of servers 
• Different types of backbone network 
• Different basic actions 
• Different transaction mixes and client loads 

 
The first choice to make is the level of abstraction to 
use. This affects the devices that must be modeled and 
the actions that can be performed on them. For EMOD 
we use a high level of abstraction, modeling servers 
with just three types of active device: CPUs, disks, and 
network interfaces. Each of these devices can have a 
basic named action performed on it, as follows: 
 

Device Action Measurement unit 
CPU Compute CPU cycles (Mcycles) 
Disk Diskop Disk operations (seeks) 
NIC Comm Message size (Kbytes) 

 
To use EMOD to model a particular e-commerce site, a 
user must therefore break down the transactions of that 
site into individual CPU, disk, and network actions, and 
compute their costs. This is easy to do with existing 
performance monitoring tools, as described in the 
validation section. The relative ease of capturing the 
data required for a particular model is an important 
consideration in choosing the level of abstraction. 
 
Note that memory is not being modeled here – for the 
purposes of the EMOD example we assume that 
servers will always have adequate memory to handle 
the load. It would be easiest to model memory as a 
resource that has a limit on its use and is temporarily 
consumed by an event, just as a network model has an 
upper bandwidth limit and costs for individual 
messages. Measuring memory requirements of 
individual applications is trickier, however, and hence 
we have left it out this simple model. 

Modeling Threads of Control 

The next decision in creating the model is how to 
represent these devices, and the threads of control that 
they use to process actions, in the topology. There are 
two basic alternatives. The first is to represent reality as 
closely as possible. For example, each CPU on a web 
server might be assigned twenty threads of control, 
representing the listening threads of the web server 
process. All these threads contend for a single 
resource (the CPU), and the kernel must therefore 
schedule them appropriately. An Indy representation to 
achieve this is described in the Extensions section. 
  
A simpler alternative is to model a single thread of 
control that services the resource under contention. For 

example, we can model a single thread of control per 
web server that has the entire CPU to itself. All client 
requests are then directed to this single thread, where 
they are queued and executed in order by the Indy 
kernel scheduler. Effectively we are modeling the flow 
of control on the CPU itself, rather than in the multiple 
threads contending for it. The overall effect in terms of 
throughput is the same, in that each request waits its 
turn for the CPU to become available, uses the 
appropriate amount of CPU time, and then leaves the 
system. However, it may not accurately reflect the 
latency of individual requests. 
 
We will use this single-thread queuing technique for all 
of the resources under contention in the EMOD model: 
CPUs, network interfaces, and disks on web servers, 
business logic servers, and database servers. For 
network interfaces we will use two threads, one for 
sending messages and one for receiving them, 
representing the full-duplex nature of the interface. This 
explains the two threads shown for each NIC in Figure 
2. 

Creating a Workload 

Having chosen a level of abstraction for our model in 
terms of basic actions and the threading model that it 
should support, we must now define the possible 
workloads of the EMOD model. That is, we must 
choose how a user can express the transactions 
supported by a particular e-commerce site, such as 
viewing the home page, or adding an item to a 
shopping basket, in terms of these basic actions. The 
simplest approach would be to hardcode a set of 
supported transactions into the model, where each 
transaction would be composed of a series of actions, 
and the user would only be able to specify the relative 
frequency of transactions and the costs of their 
individual actions. While this is suitable for a special-
purpose model aimed at a known application with a 
known workload, it is not viable for EMOD, which is 
intended to be more general-purpose.  
 
Instead, we have chosen to let the user describe the 
transactions of a particular e-commerce site using a 
transaction script. This is an XML file that defines a 
number of transactions, each of which is composed of 
one or more actions, which represent the behavior of 
the system during the transaction. The type and 
composition of transactions is completely up to the end-
user – they can supply a different transaction script for 
each e-commerce site being modeled, with a different 
range of transactions. Only the possible actions (CPU 
computation, disk operations, and network 
communication) are fixed by the model. 
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The workload generator for EMOD thus has two 
phases. In the first phase, it reads a transaction script 
(whose name is found from a configuration parameter), 
and parses the information into internal data structures 
representing each of the transactions. In the second 
phase, it generates a synthetic workload, assigning 
transactions to clients using a statistical model to 
generate them at appropriate frequencies based on 
workload parameters. The workload generator creates 
and populates a timeline for each of the clients.  

USING EMOD TO MODEL THE SVT SITE 

Having created EMOD, we now want to use it to model 
SVT, a sample e-commerce site. This is a simple two-
tier database-backed website, with a typical range of 
page actions: viewing the home page, browsing details 
of an item for sale, running a search over the site, 
viewing ads, logging in as a customer, adding an item to 
the shopping cart, viewing the cart, and checking out 
(page actions are shown in Figure 4). Note that SVT 
assumes a two-tier hierarchy where the business logic 
is executed on the web servers themselves.  
 
We will create a separate EMOD transaction for each of 
the page actions in SVT, and therefore need to 
benchmark the website in order to derive costs for the 
various actions in a transaction. For this we used a 
cluster of 16 machines, which could be configured into 
different numbers of clients and servers, as shown in 
Figure 3.  All machines were dual PII-300s with 384MB 

of RAM running Windows 2000 Advanced Server SP2, 
connected by two private switched Fast Ethernet 
networks to simulate the internet and intranet networks. 
 Specific roles were configured as follows: the client 
machines ran Microsoft’s Web Application Stress tool 
[WAS01]; the front-end servers ran Microsoft IIS 5.0; 
and the back-end server ran Microsoft SQL Server 
2000. All servers also ran Microsoft Commerce Server 
2000. 
 
To test each page, we used WAST to record our 
actions as we visited it. This script was then replayed 
using multiple clients against a single web server. 
Clients were added until the performance of the system 
(as measured by its thoughput in transactions per 
second) leveled off. The following Windows 
performance counters were recorded for all servers: 
 

Device Performance counter 
Processor %Processor Time 
Network Interface Bytes Sent/Sec 
Network Interface Bytes Received/Sec 
Physical Disk Disk Transfers/Sec 

 
The resulting figures per transaction are shown in 
Figure 4. Note that the transactions from ViewCart 
onwards require the user to have logged in first. The 
WAST script therefore contains both a Login 
transaction and the transaction being tested, and the 
costs of the Login transaction are subtracted to get the 

Name 
Internet 
Request 
(kbytes) 

IIS CPU 
Load 
(Mcycles) 

LAN  
Request 
(kbytes) 

SQL CPU 
Load 
(Mcycles) 

SQL 
Disk 
Transfers 

LAN  
Response 
(kbytes) 

Internet 
Response 
(kbytes) 

Home 2.9 3.2 0 0 0 0 18.4 
Browse 0.8 0.8 0 0 0 0 7.4 
SearchASP 0.7 5.8 0 0 0 0 4.0 
Ads 1.0 13.8 0 0 0 0 5.6 
Login 8.1 7.2 0.9 1.6 0 0.1 26.2 
ViewCart 1.0 15.2 0.3 1.0 0 0.1 5.9 
AddItem 2.8 36.8 1.9 4.2 0 0.3 7.1 
Checkout 2.9 59.3 6.9 10.6 2 0.9 8.2 
 

Figure 4: Measured transaction costs for the SVT sample site. 
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Figure 3: Experimental setup used to benchmark SVT site for validation of EMOD model. 
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final results. 

Hardware Models and Parameters 

For the purposes of testing we wrote very simple 
hardware models for the CPU, network, and disk 
models. These use a linear function to map the size of 
a request (number of CPU cycles, message size in 
kilobytes, or number of disk operations) to the time 
required. The behavior of these models can be 
adjusted via hardware parameters that represent CPU 
speed, network bandwidth and latency, and disk seek 
time. As noted previously, these can be replaced by 
more complex hardware models, as long as they 
support the same basic actions. 
 
The workload parameters used in the study are shown 
in Figure 5. Note that all of the parameter names 
ending in Freq represent transaction frequencies – they 
are referred to in the transaction script created for the 
SVT site. 
 

 

Modeling Network Traffic 

There are at least two different approaches to modeling 
the internet and backbone network traffic generated by 
WAST scripts. The simple approach is to use 
aggregate numbers for network traffic, lumping 
together all the network actions in a given transaction. 
For example, a web page consisting of six separate 
elements is transferred in real life using six separate 
HTTP request/response pairs, of different sizes. We 
can represent these with a single large HTTP 
request/response pair, deriving the sizes very easily 
from the aggregate WAST traffic numbers. The end 
result will be a model that accurately represents 
network throughput in terms of total bandwidth, but not 
latency. The advantages of this approach are that the 

data can be collected very easily, and the resulting 
script is very simple. This approach can also be used 
for modeling traffic on the backbone network, using 
performance monitor counters of bytes/sec for the 
various network interfaces to get the data. 
 
The more accurate approach is to model each of the 
network actions individually. For the front-end machines 
this is fairly straightforward, using the content length 
figures from the page data section of the WAST report 
to get HTTP response sizes. HTTP request sizes can 
be approximated to be identical, and can be derived 
from the aggregate WAST traffic divided by the number 
of requests. For back end machines, WAST does not 
capture the number of messages sent, only their size. 
We therefore have to use extra tools and techniques to 
monitor network traffic during a single test transaction. 
This approach can give full modeling of traffic and 
latency effects between the client and front end 
machines, at the cost of some extra complexity in 
capturing the data, and much lengthier XML scripts. 
 
We have chosen to use the simple approach to model 
the SVT site. A fragment of the resulting transaction 
script is shown in Figure 6: this models a Checkout 
transaction as a single request from the client to the IIS 
server, computation on the IIS server, a single request 
to the SQL server, computation and disk operations on 
the SQL server, and finally communication chained 
back to the client via the IIS server. 
 

 
Note the use of CheckoutFreq as a named variable in 
the second line of the script – this is looked up in the 
workload parameters shown in Figure 5. By contrast, 

<transaction name="Checkout" 
             frequency="CheckoutFreq"> 
  <action name="Inet:icomm" device="Client"> 
    <config name="target" device="IIS" /> 
    <config name="msgsize" value="2.9" /> 
  </action> 
  <action name="compute" device="IIS"> 
    <config name="cpuops" value="59.3" /> 
  </action> 
  <action name="LAN:lancomm" device="IIS"> 
    <config name="target" device="SQL" /> 
    <config name="msgsize" value="6.9" /> 
  </action> 
  <action name="diskop" device="SQL"> 
    <config name="DiskOp" value="2" /> 
  </action> 
  <action name="compute" device="SQL"> 
    <config name="cpuops" value="10.6" /> 
  </action> 
  <action name="LAN:lancomm" device="SQL"> 
    <config name="target" device="IIS" /> 
    <config name="msgsize" value="0.92" /> 
  </action> 
  <action name="Inet:icomm" device="IIS"> 
    <config name="target" device="Client" /> 
    <config name="msgsize" value="8.2" /> 
  </action> 
</transaction> 

Figure 6: XML representation of the SVT 
Checkout transaction for EMOD. 

Figure 5: Workload parameters for SVT 
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the costs of the individual actions are hard coded into 
the script, which must be edited in order to change 
them. These could also be named variables, which 
would make it easier to adjust them but at the cost of a 
much longer list of workload parameters.  

RESULTS 

We now show that Indy can give accurate results. At the 
simplest level, we can replicate the experiments from 
which the SVT model data were collected. Figure 7 
shows the measured and predicted results for the 
maximum transaction rates achieved by one IIS server 
in our experimental setup. The predictions are accurate 
to within 5%. This level of accuracy could also be 
achieved using simple regression techniques and 
transaction cost analysis [MSS99]. 
 
We can also validate the effect of increasing the load 
on the system by increasing the number of clients 
making simultaneous transactions. The measured and 
predicted results for the SVT home page transaction 
running on a single IIS server are shown in Figure 8. 
Note that although the SVT model underestimates the 

overall system throughput for small input loads, and 
overestimates it for higher loads, it accurately models 
the relationship between throughput and CPU load on 
the IIS server (that is, the corresponding shapes of the 
TPS and CPU lines). It also conservatively predicts 
system saturation at 8 simultaneous clients, versus an 
observed saturation point of 10 clients – this behavior 
cannot be obtained using TCA techniques. The SVT 
model could obviously be further refined to match the 
observed shape of the performance curve. 
  
Indy also offers the ability to easily ask “what-if” 
performance questions, and further analyze the results. 
For example, Figure 9 shows bottleneck analysis of a 
hypothetical server farm with a single SQL server and 
multiple IIS servers, running sequences of “login, add 
product to cart, checkout” transactions. For a fixed input 
load, the system shows no performance improvement 
beyond seven IIS servers. When we look at the Indy 
kernel variables that report average queuing delays in 
each of the active components, we see that the SQL 
server has reached saturation point. After this point the 
system throughput will remain the same until we 
increase the number of SQL servers or their 

Figure 7: Measured versus predicted transaction rates for SVT site
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performance. 
 
Finally, we can use Indyview to examine events in more 
detail. For example, Figure 10 shows the components 
of an SVT individual transaction being run on the 
threads of IIS and SQL servers, using a time-space 
diagram. 

EXTENSIONS 

As described, the EMOD tool does not utilize two 
important features of the Indy kernel: schedulers and 
resource contention timelines. These can be used to 

further improve its realism and accuracy. 

Schedulers 

EMOD uses a simple round-robin mapping of events to 
devices. This is sufficient for the uniformly random 
workloads and identical hardware configurations tested 
so far. However, it will produce incorrect results if the 
expected load on each server is not the same. A real-
life example of this would be a partial upgrade of the 
web servers on an e-commerce site, increasing the 
CPU speed of half of them. Assuming that a dynamic 
load-balancing package is being used on the site, the 

Figure 9: Transaction rate for fixed load plateaus after seven IIS servers: EMOD 
bottleneck analysis shows that the SQL server has become the limiting factor
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faster servers will then be assigned proportionately 
more of the load. Although EMOD would correctly 
model the throughput of such a site, it would 
overestimate the total time required to process a given 
workload (or, equivalently, the delay experienced by 
users). Another example would be dynamic load-
balancing of computation requests amongst multiple 
CPUs in an SMP server. If the requests are not uniform, 
EMOD’s simple round-robin mapping would result in 
queues rapidly developing on those CPUs that happen 
to get several large requests in succession, while other 
CPUs that happen to get several small requests would 
quickly complete them and then sit idle. Again, while 
total throughput would be accurately modeled, overall 
time taken and individual response time would not be. 
 
To solve this problem, we must delay assigning events 
to devices until evaluation time, when system status is 
known. This is a decoupling of causality (which events 
cause which other events) from evaluation (where 
events are processed and how long they take). 
 
We have therefore extended the Indy kernel to support 
dynamic scheduling of resources. A group of resources 
can now be controlled by a single scheduler, which 
chooses at evaluation time which of the resources each 
incoming action should be assigned to. The algorithm 
used by each scheduler is of course customizable, and 
can directly correspond to the equivalent algorithm 
being used in real life. Thus, a load-balancing web 
server scheduler might allocate requests based on the 
queue length of each web server. Actions can then be 
assigned to a scheduler, rather than to the event list of 
a particular device. 
 
Note that existing performance modeling tools typically 
do not suffer from this problem, because they tightly 
couple the generation of the workload with its 
evaluation. That is, generation and evaluation proceed 
in lockstep. This simplifies the process of generating 
new events, because they have full access to the 
current state of the system. However, this tight coupling 
is unsuitable for a component-based toolkit such as 
Indy, where we want to be able to cleanly separate the 
functions of the different components. Adding 
schedulers to Indy restores the lost information.  

Resource contention timelines 

As described, the Indy kernel models contention 
between devices for shared resources. For example, 
the bandwidth of a network is shared amongst the 
messages currently traversing it. This is a first-order 
effect: sharing a resource directly reduces the amount 
of it available to any one request. In real life there can 
be additional second-order effects, related to the 
number of simultaneous requests. For example, as the 
traffic on a shared Ethernet network approaches the 
theoretical maximum capacity of the network, 

contention between messages (and the resulting 
backoff and retransmit actions) effectively reduces the 
total bandwidth available. Thus, message transmit 
times become longer than a simple linear model would 
suggest. 
 
In order to model these second-order effects, we have 
added resource contention timelines to the Indy kernel. 
These track the instantaneous usage of every resource 
being modeled, and feed this information back to the 
appropriate hardware models. The hardware model 
can then impose additional costs on any events 
currently taking place. For example, in a model of a 
shared Ethernet, the resource tracked could be the 
number of messages contending for the network, and 
the hardware model would map this number into an 
extra delay for each message. 
 
As well as increasing the accuracy of the modeling 
process by capturing second-order performance 
effects, resource contention timelines also enable the 
user to be shown a much more intuitive view of the 
system. For example, Indyview can simultaneously 
display a graph of the contention for a particular 
resource above a time-space diagram showing events 
taking place on that resource. 
 
Figure 11 shows both dynamic scheduling and 
resource contention timelines being used in an Indy 
performance study of the IBuySpy ASP.NET site. 

RELATED WORK 

The Microsoft Commerce Server [MSS99] uses a 
methodology that is based on Transaction Cost 
Analysis (TCA) aiming to characterize the performance 
of the commerce site, determine bottlenecks, and 
perform capacity planning. A web stress application tool 
is initially employed to measure the transaction rates 
and the resource utilization varying the client load. A 
usage profile aiming to capture the anticipated user 
behavior is then defined. TCA is used to measure the 
cost of individual transaction costs. The capacity of the 
site is determined by dividing the cost of operation into 
the total CPU capacity available for the server.  
  
[MEN00] includes a detailed methodology for modeling 
commerce sites, evaluating infrastructure and services, 
and perform capacity planning. Workload formalisms 
are described for commerce sites including a Customer 
Behavior Model Graph (CBMG) and a Customer Visit 
Model (CVM). Other formalisms are also introduced to 
describe the software control flow and interactions. 
Analytical models for various aspects of the commerce 
site operation are also discussed, such as 
authentication protocols, secure transactions, and 
payment systems. Queuing models are employed to 
represent the more complex aspects of the commerce 
architecture. 
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In [LOO00] a framework is presented for enumerating 
the components of the response time of the transaction 
of a Commerce Site. Each transaction type is analyzed 
into stages of processing and communication that take 
place during its lifecycle. The authors claim that the 
framework can form the foundation of a systematic 
review process that has the ability to expose 
performance problems and reveal possibilities for 
improving response times. The data gathered and 
organized into this framework can be further utilized as 
inputs to performance models for identifying 
architectural alternatives. 

CONCLUSIONS 

In this paper we have described how to use Indy, a new 
performance modeling infrastructure, to create EMOD, 
a simple performance model for e-commerce sites. We 
have then validated this model using the SVT sample 
site. We have shown that: 

• Using the Indy kernel, a simple model can 
make reasonable performance predictions. 

• The Indyview interface can be used to answer 
“what if” performance questions 

• A model can be enhanced to use additional 
Indy features to improve its accuracy. 

We hope to release a revised version of the EMOD tool 
on MSDN (http://msdn.microsoft.com) by early 2002. 
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Figure 11: View of resource contention timelines and dynamic scheduling in the Indyview interface. The lower 
panel shows events taking place on multiple dynamically-scheduled threads on a single CPU of a web server. 
The upper panel shows resource contention timelines tracking threads on a CPU and messages on a LAN. 


